

Strommarkttreffen, 28. April 2023

Transitioning from natural gas to hydrogen: H₂-ready infrastructure

Marcus Franken, THEMA Consulting Group

- 1 Import of gases
- 2 Refurbishing distribution infrastructure
- **3** Gas-fired power plants

THEMA Consulting Group

"Hydrogen-ready" has become a widely used term that describes the ability of today's natural gas infrastructure to also handle hydrogen in the future

Main issue: EU still builds large amounts of gas infrastructure that will have to be repurposed or become stranded assets before the end of their lifetime if climate ambitions are to be met

1 Import of gases

- 2 Refurbishing distribution infrastructure
- **3** Gas-fired power plants

THEMA Consulting Group

Hydrogen-ready import terminals about 10 % more expensive than standard, still significantly cheaper compared to later modification

Expected cost difference resulting from planned H2-readiness vs. later adaptation

H₂ readiness helps decreasing costs but comes with a risk

- Germany's hydrogen imports could reach between 129 and 422 TWh in 2045
- Hydrogen-readiness prescribed by government for the new LNG terminals: New materials, compression, storage technologies and specialised safety and control systems needed for H₂ handling
- Costs for anticipatory investments lower than later adaptation

BUT:

- Hydrogen can be imported as different derivatives: Liquid H2, ammonia, LOHC
- Choice of hydrogen carrier needs to be made prior to construction and thus poses a significant investment risk and potential technology lock.

Source: Fraunhofer ISI (2022). Conversion of LNG Terminals for liquid hydrogen or ammonia

- 1 Import of gases
- **2** Refurbishing distribution infrastructure
- **3** Gas-fired power plants

Re-purposing old gas pipelines has a lower capital investment cost per kilometre than constructing new ones

Levelized cost comparison of new and repurposed H₂-pipelines

Conversion feasibility strongly depends on the condition of the specific pipeline as well as consumer quality requirements

- Large-scale deployment of clean hydrogen in Europe will require an effective transmission and storage system that connects domestic production hubs, import terminals and pipelines to demand centres
- A future large-scale hydrogen transmission network will most likely consist of both new and retro-fitted gas pipelines
- Significantly lower costs and shorter lead times for retro-fitting
- This translates to lower grid tariffs for consumers, improving the costcompetitiveness of low emission hydrogen

However, important challenges remain:

- Different gas properties of hydrogen and methane lead to different flow behaviours in a pipeline. Higher operating pressure is needed
- Pipeline material's hydrogen feasibility must be evaluated, as hydrogen may cause embrittlement and enhance crack propagation
- Chemical substances may desorb from the walls and blend with the hydrogen, affecting the gas' quality

Need to standardise hydrogen blending thresholds across Europe and improve collaboration across TSOs

Source: Guidehouse - Gas for climate: A path to 2050 (2022)

- 1 Import of gases
- 2 Refurbishing distribution infrastructure
- **3** Gas-fired power plants

100% hydrogen-ready gas turbines can be expected by the end of the decade

Some of today's turbine models can process up to 80% H2-blend

Overview of the hydrogen tolerance of different turbine models from four selected major turbine manufacturers

100% H2-ready gas turbines are not on the market today but expected by 2025 - 2030

Challenges:

- Heavy-duty gas turbines are a product of decades of engineering efforts to secure reliable, efficient and low-emission operation
- Higher flame temperatures cause challenges in the combustion process, e.g. increased potential of NOx emissions
- Higher flame speed and lower auto-ignition energy create challenges
- Power plant piping system including the valves has to be adjusted in order to account for the fugitive nature and the lower energy density
- Appropriate leakage detectors have to be installed and security schemes to be revised
- Suitable storage containers have to be installed and sufficient space must be available for later additions

Clear aim of all major manufacturers to achieve 100 % hydrogen tolerance for their largest heavy-duty turbines by 2025 - 2030

High volumetric mixtures needed to significantly reduce total emissions per MWh

High hydrogen volumes needed for effective decarbonization

- In terms of CO₂ emission savings, 30% hydrogen admixture represents only a minor step
- Given the lower volumetric energy density of hydrogen, a significant reduction of CO₂ emissions per MWh of power produced requires high volumetric shares of hydrogen
- Assumption: 90% of the CO2 emissions from production of blue H2 can be captured by CCS

CO_2 emissions of a given H_2 - CH_4 mixture for green and blue H_2

Hydrogen-ready infrastructure is underway. Standardization and regulatory support needed to reduce economic risks and unlock investments

Import terminals	 Preparing the terminals for an eventual switch to H₂ imports comes at an extra cost at roughly 10% BUT: Hydrogen carrier is main design determinant and needs to be decided from the start
Gas grid infrastructure	 Europe's extensive gas grid can be repurposed, leading to much lower cost than new-build Refurbishment will be necessary due to embrittlement and the fugitive characteristics of hydrogen
Gas turbines	 Blending already possible at lower shares, with 100% H₂-use planned by the end of the decade High volumetric mixtures needed to significantly reduce total emissions per MWh

What needs to be done to enable shift?

- Regulatory support
- Scale-up of the relevant technologies
- EU-wide harmonization

THEMA CONSULTING GROUP

Navigate the energy transition with confidence